智能工单系统开源(开源运维工单系统

来源:网友投稿 1164 2023-02-17

本文转载自网络公开信息
本篇文章给大家谈谈智能工单系统开源,以及开源运维工单系统对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享智能工单系统开源的知识,其中也会对开源运维工单系统进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

有哪些开源的工单系统

OTRS 是以 ITIL V3 为基础开发的一整套开源 IT 服务管理解决方案。

支持多渠道提交工单:邮件,***,网页,电话,监控系统,自动可根据预定规则进行工单的自动过滤,自动分类,自动分派。

可以实现事件,问题,服务请求,变更,发布,CMDB,知识管理,服务和服务水平协议(SLA)

目前有哪些工单系统比较好用的

有一个开源的工单系统貌似还不错,叫ferry。

功能挺全的,比现在市面上一些收费的工单系统都好点。最主要是开源的,方便二次开发,和定制。

工单系统相关功能:

工单提交申请

工单统计

多维度工单列表,包括(我创建的、我相关的、我待办的、所有工单)

自定义流程

自定义模版

任务钩子

任务管理

催办

转交

手动结单

加签

多维度处理人,包括(个人,变量(创建者、创建者负责人))

排他网关,即根据条件判断进行工单跳转

并行网关,即多个节点同时进行审批处理

通知提醒(目前仅支持邮件)

流程分类管理

权限管理相关功能,使用casbin实现接口权限控制:

用户、角色、岗位的增删查改,批量删除,多条件搜索

角色、岗位数据导出Excel

重置用户密码

维护个人信息,上传管理头像,修改当前账户密码

部门的增删查改

菜单目录、跳转、按钮及API接口的增删查改

登陆日志管理

左菜单权限控制

页面按钮权限控制

API接口权限控制

跪求一套完整的工单系统

商网工单系统(HelpDesk)推荐:
1.智能工单管理
客户工单提交,分配,跟踪,处理,统计等。当客户的工单提交后,系统会根据客户提交的问题类型,提交的部门,提交的关键字,提交的时间以及地域,提交的其 他详细信息进行智能分配,让客户的问题都可以快速的找到准确的客户支持。所有的支持服务请求都会基于一个问题或服务工单,问题没有处理完,工单的状态就一 直是打开直到其处理完成。
2.强大的知识库系统
系统知识库以解决问题为出发点,收集、管理企业日常整理出的问题集、使用手册等进行分类归档形成专业知识库。专业FAQ平台提供多关键字的智能匹配搜索功能,让信息检索更加快捷、准确。
3.客户信息自动归档
当客户进行工单提交的时候,客户所填写的相关资料会自动的被系统所记录,并创建用户的登录、查看信息。并且,同时进行客户归档,最终形成客户关系简单管理。
4.邮件的自动回复
商网工单系统实现问题工单,电子邮件,短信同步。同时,为了可以让客户得到最快速的回复,并且起到安抚顾客焦急的心理,我们的系统专门添加了邮件的自动回复。
5.软件定制服务
软件可以非常轻松的集成到任何网站,任何浏览器。而且,前后台的所有图片,样式,Logo都是可以编辑,或自行设计模板。方便用户完全将系统整合到现有的网站或其他系统中。

下面哪款智能终端操作系统是开源

OpenHarmony智能终端操作系统是开源。OpenHarmony由华为公司贡献主要代码、由多家共建,具备面向全场景、分布式等特点,是一款全领域、新一代、开源开放的智能终端操作系统,由开放原子开源基金会OpenAtomFoundation孵化及运营。

智能家居开源系统:Alexa、Home Assistant、HomeKit生态系介绍

选择合适的智能家居系统来统一你的设备并使它们连接在一起是一个值得选择的生态系统。今天就来盘点那些开源系统,国内国外都有。
亚马逊Alexa于2014年出现在原始的Amazon Echo智能音箱中,此后扩展到了众多音箱和其他设备。除了可以按日历的时间表回答有关天气的问题外,如果您需要立即关闭一个房间中的所有照明灯,Alexa还可以联系你拥有的多个智能家居设备,并使它们彼此联系。
实际上,有两种类型的Alexa设备:智能音箱和内置Alexa的设备,以及只能与Alexa一起使用的设备,这通常意味着可以使用其他Alexa设备的声音进行控制。这是一个重要的区别,因此请查找标有“与Amazon Alexa一起使用”的产品。
HomeKit无需在智能手机上拥有一堆彼此不一定同步的不同智能家居应用程序,而是将它们整合在一起,提供了前端控制和在您的设备上居中。
一切都可以通过iOS,iPadOS或macOS设备上的Home应用程序进行控制,并且正如您所期望的那样,它们也都适用于Siri。您可以启动Home应用程序以更改智能恒温器的温度或关闭智能灯,也可以让Siri为您完成此操作。
自动化可以分组为“场景”。例如,上面提到的场景可以称为“离开”,或者您可以使用“ 游戏 时间”场景关闭主灯,打开情绪灯,并打开Xbox(通过智能插头)。可以从iPhone或iPad的控制中心或使用Siri激活这些场景。
Home Assistant相信智能家居用户无人不知,是一个构建智慧空间的神器,是一个成熟完整的基于 Python 的智能家居系统,设备支持度高,支持自动化(Automation)、群组化(Group)、UI 客制化(Theme) 等等高度定制化设置。同样实现设备的 Siri 控制。
基于HomeAssistant,可以方便地连接各种外部设备(智能设备、摄像头、邮件、短消息、云服务等,成熟的可连接组件有近千种),手动或按照自己的需求自动化地联动这些外部设备,构建随心所欲的智慧空间。

15 个开源的顶级人工智能工具

斯坦福的专家在人工智能报告中得出的结论:"越来越强大的人工智能应用,可能会对我们的 社会 和经济产生深远的积极影响,这将出现在从现在到2030年的时间段里。"

以下这些开源人工智能应用都处于人工智能研究的最前沿。

1.Caffe

它是由贾扬清在加州大学伯克利分校的读博时创造的,Caffe是一个基于表达体系结构和可扩展代码的深度学习框架。使它声名鹊起的是它的速度,这让它受到研究人员和企业用户的欢迎。根据其网站所言,它可以在一天之内只用一个NVIDIA K40 GPU处理6000万多个图像。它是由伯克利视野和学习中心(BVLC)管理的,并且由NVIDIA和亚马逊等公司资助来支持它的发展。

2. CNTK

它是计算机网络工具包(Computational Network Tookit)的缩写,CNTK是一个微软的开源人工智能工具。不论是在单个CPU、单个GPU、多个GPU或是拥有多个GPU的多台机器上它都有优异的表现。微软主要用它做语音识别的研究,但是它在机器翻译、图像识别、图像字幕、文本处理、语言理解和语言建模方面都有着良好的应用。

3.Deeplearning4j

Deeplearning4j是一个java虚拟机(JVM)的开源深度学习库。它运行在分布式环境并且集成在Hadoop和Apache Spark中。这使它可以配置深度神经网络,并且它与Java、Scala和其他JVM语言兼容。

4.DMTK

DMTK分布式集齐学习工具(Distributed Machine Learning Toolkit)的缩写,和CNTK一样,是微软的开源人工智能工具。作为设计用于大数据的应用程序,它的目标是更快的训练人工智能系统。它包括三个主要组件:DMTK框架、LightLDA主题模型算法和分布式(多义)字嵌入算法。为了证明它的速度,微软声称在一个八集群的机器上,它能够"用100万个主题和1000万个单词的词汇表(总共10万亿参数)训练一个主题模型,在一个文档中收集1000亿个符号,"。这一成绩是别的工具无法比拟的。

5.H20

相比起科研,H2O更注重将AI服务于企业用户,因此H2O有着大量的公司客户,比如第一资本金融公司、思科、Nielsen Catalina、PayPal和泛美都是它的用户。它声称任何人都可以利用机器学习和预测分析的力量来解决业务难题。它可以用于预测建模、风险和欺诈分析、保险分析、广告技术、医疗保健和客户情报。

它有两种开源版本:标准版H2O和Sparking Water版,它被集成在Apache Spark中。也有付费的企业用户支持。

6.Mahout

它是Apache基金会项目,Mahout是一个开源机器学习框架。根据它的网站所言,它有着三个主要的特性:一个构建可扩展算法的编程环境、像Spark和H2O一样的预制算法工具和一个叫Samsara的矢量数学实验环境。使用Mahout的公司有Adobe、埃森哲咨询公司、Foursquare、英特尔、领英、Twitter、雅虎和其他许多公司。其网站列了出第三方的专业支持。

7.MLlib

由于其速度,Apache Spark成为一个最流行的大数据处理工具。MLlib是Spark的可扩展机器学习库。它集成了Hadoop并可以与NumPy和R进行交互操作。它包括了许多机器学习算法如分类、回归、决策树、推荐、集群、主题建模、功能转换、模型评价、ML管道架构、ML持久、生存分析、频繁项集和序列模式挖掘、分布式线性代数和统计。

8.NuPIC

由Numenta公司管理的NuPIC是一个基于分层暂时记忆理论的开源人工智能项目。从本质上讲,HTM试图创建一个计算机系统来模仿人类大脑皮层。他们的目标是创造一个"在许多认知任务上接近或者超越人类认知能力"的机器。

除了开源许可,Numenta还提供NuPic的商业许可协议,并且它还提供技术专利的许可证。

9.OpenNN

作为一个为开发者和科研人员设计的具有高级理解力的人工智能,OpenNN是一个实现神经网络算法的c++编程库。它的关键特性包括深度的架构和快速的性能。其网站上可以查到丰富的文档,包括一个解释了神经网络的基本知识的入门教程

10.OpenCyc

由Cycorp公司开发的OpenCyc提供了对Cyc知识库的访问和常识推理引擎。它拥有超过239,000个条目,大约2,093,000个三元组和大约69,000 owl:这是一种类似于链接到外部语义库的命名空间。它在富领域模型、语义数据集成、文本理解、特殊领域的专家系统和 游戏 AI中有着良好的应用。该公司还提供另外两个版本的Cyc:一个可免费的用于科研但是不开源,和一个提供给企业的但是需要付费。

11.Oryx 2

构建在Apache Spark和Kafka之上的Oryx 2是一个专门针对大规模机器学习的应用程序开发框架。它采用一个独特的三层λ架构。开发者可以使用Orys 2创建新的应用程序,另外它还拥有一些预先构建的应用程序可以用于常见的大数据任务比如协同过滤、分类、回归和聚类。大数据工具供应商Cloudera创造了最初的Oryx 1项目并且一直积极参与持续发展。

12.PredictionIO

今年的二月,Salesforce收购了PredictionIO,接着在七月,它将该平台和商标贡献给Apache基金会,Apache基金会将其列为孵育计划。所以当Salesforce利用PredictionIO技术来提升它的机器学习能力时,成效将会同步出现在开源版本中。它可以帮助用户创建带有机器学习功能的预测引擎,这可用于部署能够实时动态查询的Web服务。

13.SystemML

最初由IBM开发,SystemML现在是一个Apache大数据项目。它提供了一个高度可伸缩的平台,可以实现高等数学运算,并且它的算法用R或一种类似python的语法写成。企业已经在使用它来跟踪 汽车 维修客户服务、规划机场交通和连接 社会 媒体数据与银行客户。它可以在Spark或Hadoop上运行。

14.TensorFlow

TensorFlow是一个谷歌的开源人工智能工具。它提供了一个使用数据流图进行数值计算的库。它可以运行在多种不同的有着单或多CPU和GPU的系统,甚至可以在移动设备上运行。它拥有深厚的灵活性、真正的可移植性、自动微分功能,并且支持Python和c++。它的网站拥有十分详细的教程列表来帮助开发者和研究人员沉浸于使用或扩展他的功能。

15.Torch

Torch将自己描述为:"一个优先使用GPU的拥有机器学习算法广泛支持的科学计算框架",它的特点是灵活性和速度。此外,它可以很容易的通过软件包用于机器学习、计算机视觉、信号处理、并行处理、图像、视频、音频和网络等方面。它依赖一个叫做LuaJIT的脚本语言,而LuaJIT是基于Lua的。

欢迎关注~

***公众号: IT百战程序员 ,免费提供人工智能、大数据、云计算等资料~~不管你在地球哪个方位,欢迎你的关注!

关于智能工单系统开源和开源运维工单系统的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 智能工单系统开源的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于开源运维工单系统、智能工单系统开源的信息别忘了在本站进行查找喔。
本站部分文章、图片属于网络上可搜索到的公开信息,均用于学习和交流用途,不能代表班牛的观点、立场或意见。我们接受网民的监督,如发现任何违法内容或侵犯了您的权益,请第一时间联系小编邮箱jiasou666@gmail.com 处理。
上一篇:天猫优惠券退货规则(天猫退货优惠卷退不退)
下一篇:售后管理信息系统软件开发(售后服务管理软件)
相关文章

 发表评论

暂时没有评论,来抢沙发吧~